Additive Manufacturing in all Phases of the Aircraft Lifecycle
One way of addressing these challenges is to introduce additive manufacturing (3D printing) technology in all phases of the aircraft lifecycle: This innovative manufacturing process permits the development of ultra-light structures, flexible production of highly complex components, resource-efficient supply chains, as well as optimized concepts for repair, spare part logistics, recycling and waste management. In addition, 3D printing technologies offer considerable weight-saving potentials for components and a significant reduction of material waste during production.
Software Toolset for Automated Bionic Design
Nine work packages were defined to achieve the goals of the research project. They address aspects such as design, production, materials development, quality control, as well as repair and disposal of 3D-printed components. In collaboration with its partners Airbus, Laser Zentrum Nord GmbH (LZN) and the Institute for Laser and System Technologies (iLAS) at TU Hamburg-Harburg, CENIT is working to achieve a significant simplification of product development for lightweight bionic structures using streamlined design methodologies. CENIT is thereby addressing one of the most important potentials and challenges of additive manufacturing: Entirely new types of components which cannot be manufactured using traditional production methods. “One of the main reasons why additive manufacturing and 3D printing has not yet had a major impact on aircraft manufacturing is the elaborate design process. Since this is not yet automated, it must be carried out via a series of different software packages. Specialized software is also needed to process data for the 3D printing machines. During the design phase, the engineers thus have to switch back and forth between different tools. This makes the process time-intensive, and that in turn makes it expensive”, explains Michael Schwartz, Manager for Innovative Aerospace Solutions at CENIT. “CENIT’s work thus focuses on a major simplification of the design process. To achieve this, we are integrating all 3D print, design and data conditioning processes into a single toolset for automated bionic design. That way, we can help establish a consistent digital process chain”.
The individual components of the task field assigned to CENIT, Airbus, LZN and iLAS are the formulation of design guidelines for additive manufacturing, the development of a 3D-CAD toolset for the use of CATIA in bionic design, as well as 3D print data conditioning including bionically optimized structures. These tasks provide the cornerstones for a wide range of additional sub-tasks.